Sunday, December 9, 2012

SOFTWARES
Now you can easily download general softwares. Just goto "General" on the title bar and click "Softwares".

Sunday, November 18, 2012

Monday, October 1, 2012

Admissions in COMSATS Pakistan


Control LAB 04


LAB# 04 EPE:

Prelab 01

MATLAB Code:


clc
clear all
close all
p1=[1 7 2 9 10 12 15];
r1=roots(p1)
p2=[1 9 8 9 12 15 20];
r2=roots(p2)
p3=p1+p2
p4=p1-p2
p5=conv(p1,p2)


Results:

r1 =

  -6.8731         
   0.7632 + 1.0822i
   0.7632 - 1.0822i
  -1.0000         
  -0.3266 + 1.0667i
  -0.3266 - 1.0667i


r2 =

  -8.1330         
   0.6996 + 0.9880i
   0.6996 - 0.9880i
  -1.2183         
  -0.5240 + 1.0501i
  -0.5240 - 1.0501i


p3 =

     2    16    10    18    22    27    35





p4 =

     0    -2    -6     0    -2    -3    -5


p5 =

     1    16    73    92   182   291   433   599   523   609  
560   465   300


Prelab 02


MATLAB Code:

r=[-7 -8 -3 -5 -9 -10];
p6=poly(r)

Results:

p6 =

           1          42         718        6372       30817       76530       75600














Prelab 03

MATLAB Code:

num=poly([0 -2 -3 -6 -8]);
den=poly([0 -7 -9 -19 -15]);
g1=tf(num,den)
g1=20*g1
% b
num=[0 1 17 99 223 140]
den=[1 32 363 2092 5052 4320]
g2=tf(num,den)
Z=zpk(g2)
% c
g3=parallel(g1,g2)
g4=parallel(g1,-g2)
g5=series(g1,g2)

Results:

Transfer function:
20 s^5 + 380 s^4 + 2480 s^3 + 6480 s^2 + 5760 s
-----------------------------------------------
  s^5 + 50 s^4 + 892 s^3 + 6702 s^2 + 17955 s

Zero/pole/gain:
               (s+7) (s+5) (s+4) (s+1)
------------------------------------------------------
(s+16.79) (s^2 + 4.097s + 4.468) (s^2 + 11.12s + 57.6)


Transfer function: G1(s)+G2(s)

 20 s^10 + 1021 s^9 + 21967 s^8 + 267461 s^7 + 2.036e006 s^6 + 9.962e006 s^5  
                                                                               
                    + 3.099e007 s^4 + 5.89e007 s^3 + 6.204e007 s^2 + 2.74e007 s
                                                                              
---------------------------------------------------------------------------------
s^10 + 82 s^9 + 2855 s^8 + 55488 s^7 + 665867 s^6 + 5.13e006 s^5 + 2.526e007 s^4
                                                                                
                                 + 7.527e007 s^3 + 1.197e008 s^2 + 7.757e007 s  
                                                                                
 Transfer function: G1(s)-G2(s)

 20 s^10 + 1019 s^9 + 21833 s^8 + 263779 s^7 + 1.982e006 s^6 + 9.499e006 s^5  
                                                                               
                   + 2.864e007 s^4 + 5.21e007 s^3 + 5.215e007 s^2 + 2.237e007 s
                                                                              
---------------------------------------------------------------------------------
s^10 + 82 s^9 + 2855 s^8 + 55488 s^7 + 665867 s^6 + 5.13e006 s^5 + 2.526e007 s^4
                                                                                
                                 + 7.527e007 s^3 + 1.197e008 s^2 + 7.757e007 s  
                                                                                

Transfer function: G1(s)*G2(S)

 20 s^9 + 720 s^8 + 10920 s^7 + 90720 s^6 + 448980 s^5 + 1.346e006 s^4        
                                                                               
                                     + 2.362e006 s^3 + 2.192e006 s^2 + 806400 s
                                                                              
---------------------------------------------------------------------------------
s^10 + 82 s^9 + 2855 s^8 + 55488 s^7 + 665867 s^6 + 5.13e006 s^5 + 2.526e007 s^4
                                                                                
                                 + 7.527e007 s^3 + 1.197e008 s^2 + 7.757e007 s 


Prelab 04


MATLAB Code:


a1=[0 0 5 10];
b1=[1 8 18 0];
[z,p,k]=residue(a1,b1)
a2=[0 0 5 10];
b2=[1 6 9 0];
[z,p,k]=residue(a2,b2)
a3=[0 0 5 10];
b3=[1 6 34 0];
[z,p,k]=residue(a3,b3)

Results:

z =

  -0.2778 - 0.9821i
  -0.2778 + 0.9821i
   0.5556         


p =

  -4.0000 + 1.4142i
  -4.0000 - 1.4142i
        0         


k =

     []



z =

   -1.1111
    1.6667
    1.1111


p =

    -3
    -3
     0


k =

     []


z =

  -0.1471 - 0.4118i
  -0.1471 + 0.4118i
   0.2941          


p =

  -3.0000 + 5.0000i
  -3.0000 - 5.0000i
        0         


k =

     []



Prelab 01

MATLAB Code:



clc
close all
clear all
syms t
f=0.0075-(0.00034*exp(-2.5*t)*cos(22*t))+(0.087*exp(-2.5*t)*sin(22*t))-0.0072*exp(-8*t);
F=laplace(f);
F=simplify(F)


Results:



       3           2
  - 8 s  + 394386 s  + 3150455 s + 5883000
  ----------------------------------------
                        2
    50000 s (s + 8) (4 s  + 20 s + 1961)


Prelab 02

MATLAB Code:

syms s
F=(2*(s+3)*(s+5)*(s+7))/(s*(s+8)*(s^2+10*s+100));
f=ilaplace(F);
S=simplify(f);
pretty(S)

Results:

                              /                  1/2        1/2    \
                              |        1/2      3    sin(5 3    t) |
                237 exp(-5 t) | cos(5 3    t) + ------------------ |
  5 exp(-8 t)                 \                          9         /
  ----------- + ---------------------------------------------------- + 21/80
      112                                140





Prelab 03

MATLAB Code:

syms s I1 I2 I3 V1
M=[7+s+1/(5*s) -(s+2) -5;-(s+2) 4+2*s+1/(3*s) -(s+2);-5 -(s+2) 8+s+1/(4*s)]
I=[I1 I2 I3];
V=[V1 0 0];
delta1=[V1 -(s+2) -5;0 4+2*s+1/(3*s) -(s+2);0 -(s+2) 8+s+1/(4*s)];
delta2=[7+s+1/(5*s) V1 -5;-(s+2) 0 -(s+2);-5 0 8+s+1/(4*s)];
delta3=[7+s+1/(5*s) -(s+2) V1;-(s+2) 4+2*s+1/(3*s) 0;-5 -(s+2) 0];
I1=det(delta1)/det(M);
I1=I1/V1;
S=simplify(I1);
pretty(S)
I2=det(delta2)/det(M);
I2=I2/V1;
S=simplify(I2);
pretty(S)
I3=det(delta3)/det(M);
I3=I3/V1;
S=simplify(I3);
pretty(S)

Results:

M =

[ s + 1/(5*s) + 7,           - s - 2,              -5]
[         - s - 2, 2*s + 1/(3*s) + 4,         - s - 2]
[              -5,           - s - 2, s + 1/(4*s) + 8]


I1/V1=
         4        3        2
     5 s (12 s  + 192 s  + 346 s  + 44 s + 1)
  ---------------------------------------------
      5        4         3         2
  60 s  + 887 s  + 2142 s  + 1331 s  + 79 s + 1

           I2/V1=

             2     3       2
         15 s  (4 s  + 60 s  + 105 s + 2)
  ---------------------------------------------
      5        4         3         2
  60 s  + 887 s  + 2142 s  + 1331 s  + 79 s + 1

I3/V1=

           2     3       2
         20 s  (3 s  + 42 s  + 72 s + 5)
  ---------------------------------------------
      5        4         3         2
  60 s  + 887 s  + 2142 s  + 1331 s  + 79 s + 1